

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

3-WP06 High Efficiency Turbochargers for Large-Bore ICEs

Coordinator of the WP:

Brno University of Brno (BUT), prof. Ing. Pavel Novotný, Ph.D.

Participants of the WP: Czech Technical University (CTU), doc. Ing. Oldřich Vítek, Ph.D. PBS Turbo (PBST), Ing. Jiří Klíma

Main Goal of the WP

Research on new ways to improve the overall efficiency of turbochargers with application in large-bore internal combustion engines.

Partial Goals for the Current Period

3-WP06-001 (G-funk): Turbocharger with implemented measures to increase the mechanical efficiency 3-WP06-002 (R-SW): Software for heat transfer estimation in turbocharger rotor system 3-WP06-003 (O): Report on Milestones – Large turbochargers

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

- 3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency is under development, initial analyses were realized.
- → PBST provided the data for the simulations of compressor and turbine fluid flows and verified the results of CFD simulation on initial turbocharger geometry.

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency.

 \rightarrow Compressor loss sources were analyzed in detail (BUT). Relative compressor power losses under $u_2 = 525 \text{ m} \cdot \text{s}^{-1}$, $\dot{m} = 3 \text{ kg} \cdot \text{s}^{-1}$ Loss in diffuser and volute: 7.8 % **IRC loss** Tip clearance loss 10.8 % Impeller loss (passage vortex, 19.2 % blade surface vortex, slip etc.) Disk friction power: 0.5 % _oss in inlet: 800 Pa. Shaft power: 100 % Blowby (volumetric loss): 0.04 %

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

□ 3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency.

A significant part of the research activities focused on the analysis of the interaction between the compressor backwheel and the stator, the so-called disc friction.

TN02000054

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency.

→ Theoretical compressor efficiency improvements by reducing compressor disc friction under steady state operating conditions for oil temperature at inlet $T_{in} = 60$ and 90°C.

Decreasing the disc friction on the compressor wheel has only **small effects** on efficiency under **high-speed** conditions. The effects under low speeds are mostly insignificant.

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency.

- → Stress reduction due to vibrations of the blades caused by interactions of the gas flow and turbine structure.
- \rightarrow PBST provided the turbine geometry and thermodynamics data of pulsating flow for the fluid-structure simulation methodology.
- > Analysis of original and modified blades under vibration including modal analyses, excitation frequency estimations, fluid flow analyses and strength analyses.

Blade interference diagram based on modal analysis of a blade

CFX model of turbine fluid flow

Stress levels for original and modified blades

0.45

0.55 0.66 0.78 0.89

0.07 0.14

0.21 0.29 0.36 0.43 0.50

0.57

Č

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Experimental data as input

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

- **3**-WP06-002: Software for heat transfer estimation in turbocharger rotor system is under development. The analysis of the heat flows to the turbochargers was realised using the 1D models. The SW capabilities will cover:
- \rightarrow Input values will be experimentally determined quantities.
- \rightarrow The model will include TC rotor bearing system.
- \rightarrow The results will provide information for turbocharger design improvement.

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

□ 3-WP06-003: Report on Milestones – Large turbochargers

- → Transient performance of turbocharger was analyzed in detail.
- → Transient performance is always verified, however it may not be that important/critical for typical applications of such gas SI ICE.
- → The following was analyzed:
- · influence of BMEP control means,
- · influence of NOx level,
- influence of optimization target for BMEP,
- influence of applied turbocharger bearing(s) sliding bearings (default) and ball bearings,
- influence of ambient conditions standard (default), high altitude (3000 m) and high altitude combined with increased temperature (40 C),
- · effect of applied fuel methane (default) and hydrogen,
- · influence of minimum air excess during fuel enrichment phase,
- influence of blow-by level and combustion phasing/delay during transient
- influence of turbocharger efficiency, effect of electrical assistance for HP turbocharger.

Č

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

- □ 3-WP06-003: Report on Milestones Large turbochargers. The effect of applied fuel was investigated:
- \rightarrow Fully optimized data for 3 fuel types: methane (def.), hydrogen and ammonia under constant NOx level + constant engine speed.
- \rightarrow Due its very low density, the application of hydrogen (H2) requires higher boost pressure, higher air excess \Leftrightarrow weaker Millerization effect can be applied and combustion is shifted more in expansion stroke to help boost group performance => decrease of efficiency.
- \rightarrow On the other hand, the application of ammonia (NH3) is more effective \Leftrightarrow higher energy content per unit volume + higher mass/density leads to even better performance than the default case (methane: CH4)

č

8

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Activities in 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

- 3-WP06-003: Report on Milestones Large turbochargers. The electrically assisted turbocharging was investigated:
- → Fully optimized data to compare standard case with electrically assisted one (no limitation of eTurbo power).
- → Under optimal setting, eTurbo power is zero ⇔ this was to be expected due to limited efficiencies of energy transformation (internal => mechanical => electrical => mechanical) => no efficiency benefit when eTurbo is applied.
- → However, eTurbo has potential:
- to improve BSFC when ICE operates under lower load/BMEP (when compared with the optimal/reference one) <> more effective BMEP control than standard ones (e.g., throttle, waste-gate, blow-by);
- to increase achievable maximum of BMEP;
- to speed up significantly a transient response;

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Fulfillment of goals and deliverables of 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

- 3-WP06-001: Turbocharger with implemented measures to increase the mechanical efficiency, Gfunk funkční vzorek, VI/2026, PBST 0.8; BUT 0.1; CTU 0.1 in progress & no major delays:
- > Research work in evaluations of overall efficiency under steady state or transient operating conditions will serve to significantly improve the existing design of the turbocharger and develop the functional sample.
- 3-WP06-002: Software for heat transfer estimation in turbocharger rotor system, R-software, VI/2026, BUT 0.9; PBST 0.1 – in progress & no major delays:
- The SW is under development. Research activities will be used for the development of a software solution. An open question is a software graphical user interface (GUI) that is sufficiently flexible for use in industrial practice and prepared for defined industrial standards.
- 3-WP06-003 | Report on Milestones Large turbochargers, O-ostatní, VI./2026, PBST 0.1; CTU 0.9 in progress & no major delays:
- → Turbochargers maps were transferred (from PBST) and important topics were agreed.
- → The model was updated mainly with focused to HP electrically assisted turbine including its control.
- → Large-scale optimization have been performed with focus to different topics.
- → Transient performance is always verified for each selected/optimized variant.

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Fulfillment of goals and deliverables of 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

Assessment of the Contribution of Deliverables

- → Thermodynamics of very high boosted ICEs with low NOx level (3-WP05), (3-WP07), (4-WP08), (4-WP06).
- → Transient response and low mechanical losses (3-WP05), (4-WP08), (4-WP06).
- → Fuel Cells super-/turbocharging 4-WP06

Result dissemination:

- → Vitek, O., Macek, M., Mares, B., Klima, J. and Vacek, M. Two-Stage Turbocharged Large-Bore SI ICE Transient Operation Under Different Conditions. 54th international scientific conference of Czech and Slovak universities and institutions focused on research and teaching methods related to ICEs, alternative powertrains and transport. Hustopeče, VUT v Brně, 2023. ISBN 978-80-214-6164-2.
- → Novotný, P., Kudláček, P., Vacula, J., Kocman, F. Innovative approach to reduce friction losses in turbocharger journal bearings. 54th international scientific conference of Czech and Slovak universities and institutions focused on research and teaching methods related to ICEs, alternative powertrains and transport. Hustopeče, VUT v Brně, 2023. ISBN 978-80-214-6164-2.

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Current contribution of 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

□ Assessment of the formal/administrative goals of the work package

	PBST	BUT	CTU
Finances (reporting/spending)	OK	OK	ОК
Commercialization (the whole organization)	OK	OK	ОК
Deliverables	ОК	OK	ОК

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

3-WP06: High Efficiency Turbochargers for Large-Bore ICEs

Thank you for your attention

prof. Ing. Pavel Novotný, Ph.D. +420 541 142 272 novotny.pa@fme.vutbr.cz

Acknowledgment

This research has been realized using the support of Technological Agency, Czech Republic, programme National Competence Centres II, project # TN02000054 Božek Vehicle Engineering National Center of Competence (BOVENAC).

Brno University of Technology

Faculty of Mechanical Engineering Institute of Automotive Engineering Technická 2 616 69 Brno Czech Republic

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Výtah z prací 2023 za 3-WP06: Vysoce účinná turbodmychadla pro velké spalovací motory

č

Colloquium Božek 2023 – BOVENAC 31. 10. 2023, CVUM Roztoky

Programme National Competence Centres

Results of 3-WP06: High Efficiency Turbochargers for Large-Bore ICEs Achieved in 2023

č

